This paper reports a new species of dog (*Canis accitanus* nov. sp.) from the Fonelas P-1 site (dated close to the Plio-Pleistocene boundary) in Granada, Spain. This new taxon shows cranial features more similar to coyote-like dogs (*C. lepophagus*, *C. priscolatrans*, *C. arnensis* or *C. latrans*) than to wolf-like dogs (*C. etruscus*, *C. mosbachensis* or *C. lupus*), such as a long and narrow muzzle, a little-developed sagittal crest and frontal bones raised only a little above the rostrum. However, it also shows a series of autapomorphic characteristics in its upper dentition, essentially in the first upper molar, which reflects a trophic adaptation towards a more abrasive diet than that eaten by other species of its genus. This new dog is the smallest representative of the genus *Canis* ever recorded for the European Pliocene or Pleistocene.

© 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Plio-Pleistocene boundary; Canidae; *Canis*; Fonelas P-1; Guadix basin; Spain

Mots clés : Limite Plio-Pléistocène ; Canidae ; *Canis* ; Fonelas P-1 ; Bassin de Guadix ; Espagne

1. Introduction

This paper reports a new species of dog (*Canis accitanus* nov. sp.) from the Fonelas P-1 site (dated close to the Plio-Pleistocene boundary) in Granada, Spain.

The fossil record of the genus *Canis* covers a period of some 4 million years from the Lower Pliocene to the present, during
which time different species have belonged to palaecocommu-
ities worldwide with the exceptions of Antarctica and, until
recently, Australia. The taxonomy of the genus’ fossil members
is complex due to their anatomical homogeneity, the multitude
of species described, and the wide geographical distributions of
diff erent populations.

The modern day members of Canis are medium to large
Canidae with a lower dental formula of 3-1-4-3. Eight species are
currently recognised (Nowak, 1999), including the three
jackals:

C. mesomelas Schreber, 1775 (the black-backed jackal of
Africa, which has been found at Pliocene sites; for a review
see Garrido (2002));
C. adustus Sundevall, 1847 (the side-striped jackal, also of
Africa and also reported for the Pliocene);
C. aureus Linnaeus, 1758 (the golden jackal, whose Asian
populations met those of C. mesomelas and C. adustus in
eastern Africa at some point during the last 500,000 years
[Van Valkenburgh and Wayne, 1994]).

The Ethiopian species C. simensis Rüppell, 1840, sometimes
known as the Simien jackal, Ethiopian wolf or Abyssinian wolf,
and of which to date no fossils have been found, seems to be
more closely related to the wolf and the coyote than the
remaining African canids (Gotelli et al., 1994; Sillero-Zubiri
and Gottelli, 1994). It probably represents a relic of an ancestral
wolf population that dispersed over North Africa and Eurasia.
Nonetheless, some authors remain of the opinion that it is
related to the jackals (Rook and Azzaroli-Puccetti, 1996). C.
simensis is found only in the mountains of Ethiopia, where it is
threatened with extinction due to the risk of hybridisation with
domestic dogs, among other dangers to its existence.

The wolf C. lupus Linnaeus, 1758, was found all over
Eurasia during the Upper Pleistocene and continues to be
present over much of Palaearctic Eurasia and certain areas of
North Africa, North America and Mexico. The domestic dog,
C. familiaris Linnaeus, 1758, appears to have arisen from
C. lupus about 15,000 years ago. Most authors regard it as a
subspecies of the wolf and give it the name C. lupus familiaris
(Van Gelder, 1978). The coyote, C. latrans Say, 1823, appeared
in North America during the Lower Pleistocene, although its
fossils are not abundant until well into the Mid Pleistocene. It
currently occupies large areas of the American continent from
Alaska to Panama. Finally, the red wolf, C. rufus Audubon and
Bachman, 1851, has long been considered a relic of the Plio-
Pleistocene species C. priscolatrans Cope, 1899, which lived
only in North America. However, according to recent genetic
analyses, this taxon arose from hybridisation between wolves
and coyotes at some point during the last 10,000 years (Reich
et al., 1999). Currently, the red wolf occupies small territories in
the south of the USA, and is threatened by extinction.

The great homogeneity of the morphological characteristics
of the members of this genus renders distinction between
certain fossil species difficult. Indeed, great historical
disparities have existed in the classification of materials. The
oldest representative of the genus Canis “sensu stricto” –
C. lepophagus Johnston, 1938 – was recorded in early Pliocene
North American sites, and has been phylogenetically related to
the modern day coyote C. latrans (Kurtén, 1974). It is difficult
to identify the first Euroasiatic record of the genus Canis, since
there are numerous doubtful citations from Miocene and Lower
Pliocene sites, these have engendered very different opinions
regarding the genus to which these materials really belong. The
oldest reference corresponds to the species “Canis” cipio
Crusafont, 1950, from the Turolian (end of the Miocene) of the
Iberian Peninsula. This taxon appears to be related to “Canis”
michauxi Martin, 1973, of the Perigian Pliocene (Torre,
1979). Both forms show very primitive characteristics and are
quite different from the genus Eucyon Tedford and Qiu, 1996.
Therefore, until this taxonomic problem is solved, they remain
included in Canis “sensu lato”, although with some doubt.
Morales (1981) identified Canis sp. at the Venta del Moro site,
also from the end of the Miocene. However, these specimens
were later determined to belong to Eucyon monticinensis
(Rook, 1992). The species E. davisii (Merriam, 1911), E. minor
(Teilhard de Chardin and Piveteau, 1930) and E. oedessanus
(Odinow, 1967) were also originally classified as members of
the genus Canis. Similar problems are seen with the African
records. The oldest materials from the Pliocene and Plio-
Pleistocene were originally classified as “Canis” brevirostris
Barry, 1987, but are now included in Eucyon (Rook, 1993;
Spassov and Rook, 2006). In the year 2000, Werdelin and Lewis
described a canid species (Canis n. sp. A) from a Pliocene site at
South Turkwel that represents the most ancient African
testimony of this genus (Werdelin and Lewis, 2000, 2005).

With respect to the Asian continent, the oldest fossils
assignable to the genus Canis come from deposits some
3.4 million years old in the Mazegu Formation of the Yushe
Basin, China (Flynn et al., 1991). This form has anatomical
characteristics similar to those of the Upper Villafranchian
European species C. etruscus Forsyth-Major, 1877 (Tedford
et al., 1991). Thus, although the genus Canis probably
appeared during the Miocene, it is not until the Lower Pliocene
that its presence can be confirmed in both the Old and
New Worlds.

Later, the Chinese Villafranchian record contains numerous
discrepancies. The species C. chihliensis Zdanski, 1924, has
been described in the villafranchian deposits of Nihowan, and
although it has been proposed a synonym of C. etruscus (Torre,
1967), some authors believe it to be more closely related to the
C. (Xenocyon) falconeri group (Rook, 1993). The subspecies
C. chihliensis palmandis Teilhard and Piveteau, 1930, was also
described from Nihowan, but was later identified as an Asiatic
representative of the European species C. arnensis (Rook,
1993). Torre (1967), however, proposed it to be synonymous
with C. etruscus.

The Republic of Tajikistan was thought to be home to a site
that held evidence of the migration of the genus Canis from the
American continent towards Europe and Africa some
2.5 million years ago. It is from here that the species C.
kurromaensis Somnikova, 1989 was reported, although it
was later definitively related to the genus Eucyon (Spassov
and Rook, 2006). The canid from the Upper Villafranchian of
Siwaliks, *C. cautleyi* Bose, 1879, is a recent synonym of *C. etruscus* (Torre, 1967; Rook, 1993).

The species *C. arnensis* Del Campana, 1913, has been reported from several European Lower Pleistocene sites, e.g., Tasso, Faella and Bucine in the Upper Valdarno region (Italy), Gerakarou (Greece) and Sainzelles (France), among others. Although the small *C. arnensis* was once related to the jackals (Torre, 1967, 1979; Kurtén, 1968), it is considered in the present work as the ancestor of the Pleistocene wolf *C. mosbachensis* Soergel, 1925 (Soergel, 1928; Thenius, 1954, 1980; Beaumont, 1979, 1980), with a close relationship with the lineage of the coyote [as was proposed by Kurtén (1974)]. Kurtén and Anderson (1980) related the American species *C. leopahagus* with the European *C. arnensis*, arguing that they probably represented the extremes of a single population of coyotes of holarctic distribution that originated in North America. The species *C. senecensis* Martin, 1973, was reported from the French site of Senèze, thought to be some 2 million years old (Roger et al., 2000). The only elements recorded, however, were two hemimaxillary fragments that show no anatomical or metric differences to *C. arnensis*, it is therefore now considered a recent synonym (Garrido, 2002, 2006). When this is taken into account, *C. arnensis* appears not to belong only to the European ecosystems of the Tasso Faunal Unit, as traditionally proposed (Torre et al., 1992), but also to the Upper Pliocene.

In 1993, Rook identified a new taxon at Mediterranean sites dating from the end of the Villafranchian to the beginning of the Galerian (*Venta Micena, Pirro Nord, Le Vallonnet, Cueva Victoria, Huescar-I, Colle Curti, Cullar de Baza-I, L’Escale, Petralona, and the Israeli site of Oubeidiyah). Given the provisional name of *Canis* aff. *arnensis* it was thought to be an advanced form of the last members of *C. arnensis*. Rook and Torre (1996) suggest, therefore, that in the Lower Pleistocene-Mid Pleistocene transition, Europe was home to two different lineages, that of *C. arnensis* (primitive form) plus *Canis* aff. *arnensis* (advanced form), which occupied Mediterranean areas, and that of *C. etruscus*–*C. mosbachensis*, which occupied the centre and north of Eurasia. In contrast, García and Arsuaga (1999) suggest *C. aff. arnensis* and *C. mosbachensis* to be synonyms, and therefore that only one species inhabited Europe from the beginning of the Pleistocene. This latter hypothesis may be more coherent with the values for the anatomical and metric variables analysed.

On the European continent, *C. etruscus* was well represented during the Upper Pliocene and Lower Pleistocene in Italy; its record is more sporadic in other countries. In 1971, Bonifay incorrectly identified this species (later classified as *C. mosbachensis*), among the materials of the L’Escale site in France, and concluded that *C. etruscus* persisted in Europe until the Mid Pleistocene. Some authors held to the opinion of Bonifay, citing the presence of *C. etruscus* in post-Villafranchian deposits (Morales and Soria, 1979; Pons-Moyà, 1987), even giving it chronostratigraphic value by differentiating between two subspecies, the older *C. etruscus etruscus* and the more modern *C. etruscus mosbachensis* (Pons-Moyà, 1987; Agustí et al., 1987). In our opinion, records of *C. etruscus* younger than the Plio-Pleistocene transit are unlikely to exist: any individuals thus classified most probably belong to *C. mosbachensis*.

In 1997, Koufos and Kostopoulos reported a new canid from the Greek site of Apollonia-I, which dates from the end of the Villafranchian. This was intermediate in size between *C. etruscus* and *C. arnensis* and was given the name *C. apolloniensis*. It has also been reported from the Pirro Nord and Petralona sites. In agreement with García (2002), however, *C. apolloniensis* appears to have insufficient specific anatomical structures to justify its being recognised as a new species; rather, it may represent one of the first populations of *C. mosbachensis*.

The Pleistocene wolf *C. mosbachensis*, which has been recorded at numerous European Lower and Mid Pleistocene sites has for decades been considered the ancestor of the modern-day wolf (Thenius, 1954; Kurtén, 1968; Torre, 1974). It appears to be generally accepted that *C. etruscus* evolved into *C. mosbachensis*, before increasing in size and becoming *C. lupus* during the Mid Pleistocene (Torre, 1967, 1979, 1974; Kurtén, 1968; Martin, 1973; Sotnikova, 1989, 1991; Rook and Torre, 1996). Some authors consider *C. mosbachensis* to be a subspecies of the wolf, and give it the name *C. lupus mosbachensis* (Lumley et al., 1988). It is unlikely that *C. mosbachensis* and *C. etruscus* are directly related. Rather, *C. mosbachensis* probably descends from *C. arnensis*, as proposed by Soergel (1928).

Finally, in 2001, an almost complete skull of a small canid was discovered at the Fonelas P-1 site, which was provisionally designated as belonging to *Canis* sp. cf. *C. arnensis* (Arribas et al., 2001). A later review of the canids from this site revealed this skull to possess anatomical and metric differences to the Lower Pleistocene *C. arnensis*, showing it to belong to a new Iberian Plio-Pleistocene species of the genus *Canis* (Garrido, 2002, 2006; Garrido and Arribas, 2002).

2. The Fonelas P-1 site

The Fonelas P-1 site (Fig. 1), which was discovered in 2000 and has been investigated since 2001 under the auspices of the Proyecto Fonelas (Arribas et al., 2001), has become the reference site of the Iberian Peninsula for palaeontological research into the Plio-Pleistocene transition in a continental setting (http://www.igme.es/internet/museo/investigacion/paleontologia/fonelas/index.htm).

The sedimentary environment and the genetic model of the site (*Sondeo B*) have been established (Viseras et al., 2006), and the biological processes associated with the genesis of its fossil association and the structure of the sedimentary matrix surrounding the fossils have been characterised. Its diverse association of large mammals (Arribas et al., 2004; Garrido, 2006) includes both native European species (Mammuthus meridionalis, Stephanorhinus etruscus, Eucladoceros sp.,...
Fig. 1. Geographical and geological location of the Fonelas P-1 site. A. Geological map of the Cordillera Bética in southeastern Spain, showing the location of the Guadix Basin. B. Geological map of the Guadix Basin (the ‘X’ marks the location of the Fonelas P-1 site). C. Detailed stratigraphic log of the Fonelas P-1 site (Sondeo B, modified after Viseras et al. [2006]).
Metacervoceros rhenanus cf. phillisi, Croizetoceros ramosus ssp., Gazellospira torticornis ssp., Homotherium latidens, Megantereon cultridens ssp., Acinonyx pardinensis, Lynx pardinaeus, Meles iberica and C. accitanus nov. sp.) and immigrants from Asia and Africa (Equus cf. major, Potamochoerus nov. sp., Mitilanotherium nov. sp., Leptobos etruscus, Praeovibos nov. sp., Capra nov. sp., C. etruscus, C. falconeri, Hyaena brunnea and Pachycrocuta brevirostris). Such a palaeobiological association is new for Eurasia.

Analysis of the Last and First Appearance Data (LADs and FADs) for the site’s most important taxa assign the fossil association a position between the Olivola and Tasso Faunal Units (FU) (Raia et al., 2006), or, if the indications of other authors regarding French fossil associations (Palombo and Valli, 2003-2004) are taken into account, in zone MNQ-18. Carnivores are represented by eleven species, four of which are canids: V. alopecoides, C. etruscus, C. falconeri, and the new Canis member presented in this paper, C. accitanus nov. sp.

3. Systematic palaeontology

Order CARNIVORA Bowdich, 1821
Suborder CANIFORMIA Kretzoi, 1943
Family CANIDAE Fischer de Waldheim, 1817
Subfamily CANINAE Fischer de Waldheim, 1817
Tribe CANINI Fischer de Waldheim, 1817
Genus Canis Linnaeus, 1758
C. accitanus nov. sp.

Etymology: the species name is the Latin adjective describing the inhabitants of Accitania (Land of Acci), an Ibero-Roman term used for the Guadix region where the Fonelas site is found.

Holotype: FP1-2001-0434 (Fig. 2): a skull with the left dentition complete (except for the canine), and with the right P1, M1-M2, held at the Museo Geominero (Instituto Geológico y Minero de España, Ministerio de Educación y Ciencia), Madrid, Spain.

MNI: 2 adults (P2 and P3 left).

Type locality: Fonelas P-1 (Fonelas, Guadix Basin, Granada, Spain) (Fig. 1). See Arribas et al. (2001) and Viseras et al. (2006) for details.

Stratigraphic level: facies association E (Sondeo B), Unit VI (Sistema Axial) of the Guadix Formation, in agreement with Viseras et al. (2006).

Geological age: Plio-Pleistocene boundary, c. 1.7–1.9 Ma, based on comparisons of the faunal association with older faunas from the Upper Pliocene of Saint-Vallier (MNQ-17) and Senèze (MNQ-18), contemporaneous faunas from the Plio-Pleistocene boundary (Olivola-Tasso Italian FUs), and younger faunas from the Lower Pleistocene (MNQ-19) (Arribas et al., 2001, 2004; Garrido, 2006).

Diagnosis: a small canid with a very long and narrow splanchnocranium showing two long and fine palatine fissures. The caudal margin of the nasal bones clearly lies beyond the caudal limit of the maxillary bones. The frontal bones of the neurocranium are only slightly prominent and have zygomatic apophyses that project strongly outward. The sagittal crest is

Fig. 2. Skull of C. accitanus nov. sp.; holotype FP1-2001-0434. A. Side view; B. Sagittal view; C. Ventral view. Scale bar = 2 cm.

Crâne de C. accitanus nov. sp.; holotype FP1-2001-0434. A. Profil ; B. Vue sagittale ; C. Vue ventrale. Échelle = 2 cm.
little developed. The upper premolars are separated by a diastema. P1 has a conical crown and is very pointed, the basal cingulum is hardly visible and there is no distal platform. P2 has a very tall protocone and no traces of a posterior accessory cuspid. P3 shows a posterior accessory cuspid that is no more than a cuspule next to the distal margin of the protocone, giving the distal platform an inclined appearance. P3 has a pointed, little-individualised protocone that projects mesially with respect to the mesial margin of the paracone, forming a continuum with lingual face of the tooth: the metacone is single lobed. M1 shows pointed cusps and a protoconule close to the protocone; the tooth has a labiolingual ridge that joins the metacone with the entocone and a talon that projects weakly towards the caudal area of the skull. M4 also has a bilobed hypocone divided by a labiolingual notch.

Description: the only skull recorded to date is practically complete (Fig. 2 and Table 1), although it shows strong dorsoventral fossil-diagenetic compression. This has caused the displacement of the left anterior region of the skull, which now lies over the right half. The zygomatic arch and most of the right dentition was probably lost prior to burial. The elements FP1-2001-0606 (I1), FP1-2001-0175 (P2), FP1-2001-0531 (P3) and FP1-2001-0156 (P4) may belong to the same individual as skull FP1-2001-0434 since these were found just a few centimetres below the latter. They may have become dislodged during putrefaction. The skull conserves its tympanic bullae, as well as the premaxillary, maxillary, nasal, frontal, parietal, occipital, sphenoid, pterigoid, vomer and palatine bones. The zygomatic arch of the right side has not been preserved, although the region posterior to it forms part of the squamous bone, where the condyles for the articulation of the jaw are situated.

The splanchnocranium is very long and narrow and shows a wide nasal orifice, with wedge shaped premaxillary bones; the caudal margin of this wedge ends at the level of the second premolar. The maxillary bones each contain a small, oval-shaped foramen above P3. The caudal margin of the nasal bones lies well beyond the maxillofrontal suture. The neurocranium has frontal bones that show little prominence; a shallow longitudinal depression runs between them. Each frontal bone has a well developed zygomatic apophysis from which the frontal crests depart, and domed parietal bones (very deformed by compression) separated from one another by a mildly pronounced sagittal crest that reaches its maximum development in the caudal area where it meets a well developed occipital crest.

Ventrally, the palate is very long and narrow, but it dilates progressively after the distal margin of P2 to reach its maximum width between the distal limit of the carnassial teeth. After this point, it becomes slightly narrower again. The palatine fissures are elliptical in shape and very elongated in the anterior-posterior direction. The palatine foramina open at the mean level of P3. Secondary palatine foramina can also be seen. In the depression present in the palatine bone between P4 and M1 there is a deep hollow close to the lingual face of the metacone of P4, into which a very sharp protocnid of M\textsubscript{1} enters when the mandible is completely closed. The alisphenoid bone has suffered great compression, its morphology cannot therefore be accurately described. The articulatory condyles, which have been preserved complete, are deep and show the typical elliptical shape of the family. The tympanic bullae also well preserved are oval: the dimensions of their main axes are 19.83 and 16.9 mm. Despite the compression it has suffered, an elliptical *foramen magnum* can be seen.

The left upper jaw conserves I1-I3, P1-P4 and M1-M2, the canine is missing (Fig. 2 and Table 2). In the right upper jaw, only P1 (highly deformed by compression) and M1-M2 have been preserved. The implantation of P1 and P2 is practically parallel to the anterior-posterior axis of the cranium, however, it curves outwards at P3 and P4 and inwards at the molars. Diastemas are seen between I3 and the alveolus of C, between the latter alveolus and P1, between P1 and P2, between P2 and P3, and between P3 and P4, the size becoming slightly smaller from the first to the last.

The incisors become larger from I1 to I3. I1 and I2 show an external lateral denticule and a thick lingual cingulum. I1 is caniniform: it has a mesiobuccal and a distal ridge running its length, and a thick lingual cingulum. The first upper premolar is a simple tooth with a single root. It has a very pointed conical crown with two mesiobuccal and distal ridges; the lingual cingulum is little developed, and there is no distal platform. The second upper premolar has a pointed protocone with mesiobuccal and distal ridges; the linguodistal cingulum is little developed. The talon forms a small, flat surface along which runs a very sharp distal ridge. No true posterior accessory cuspid (pac) can be seen in P2.

The third upper premolar has a mesiobuccal and a distal ridge running the length of the talon. The platform formed by the talon is slightly larger than that of P2. The cusplet of a pac can be seen next to the distal face of the protocone. A distal cingulum is also visible, which curves slightly to form another small denticule, the distal part of the tooth therefore has a clearly

Table 1

<table>
<thead>
<tr>
<th>Anatomical features</th>
<th>Measurements (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>182</td>
</tr>
<tr>
<td>Condylorbasal length</td>
<td>168</td>
</tr>
<tr>
<td>Basal length</td>
<td>160</td>
</tr>
<tr>
<td>Upper neurocranium length</td>
<td>80.14</td>
</tr>
<tr>
<td>Viscerocranium length</td>
<td>84.72</td>
</tr>
<tr>
<td>Facial length</td>
<td>102.47</td>
</tr>
<tr>
<td>Greatest length of the nasal bones</td>
<td>63.95</td>
</tr>
<tr>
<td>Snout length</td>
<td>76.26</td>
</tr>
<tr>
<td>Median palatal length</td>
<td>(90.02)</td>
</tr>
<tr>
<td>Palatal length</td>
<td>28.74</td>
</tr>
<tr>
<td>Greatest breadth of the occipital condyles</td>
<td>35.30</td>
</tr>
<tr>
<td>Greatest breadth of the foramen magnum</td>
<td>16.20</td>
</tr>
<tr>
<td>Height of the foramen magnum</td>
<td>12.95</td>
</tr>
<tr>
<td>Smallest breadth of skull (at the postorbital constriction)</td>
<td>31.20</td>
</tr>
<tr>
<td>Greatest palatal breadth</td>
<td>(47.11)</td>
</tr>
<tr>
<td>Smallest palatal breadth</td>
<td>27.61</td>
</tr>
<tr>
<td>Breadth at the canine alveoli</td>
<td>30.10</td>
</tr>
</tbody>
</table>
inclined platform. The upper carnassial tooth has a pointed paracone with a mesiolingual ridge that joins at its base with a mesial cingulum. At the base of the paracone, there is a second crest a few millimetres in height arising from the protocone. The protocone is very pointed: it is little individualised and projects slightly towards the mesial region with respect to the mesial margin of the paracone, forming a continuum with the lingual face of the latter. The distal region of the paracone has a very sharp crest that ends in an open V-shaped depression which, on the labial face, gives rise to a small hollow in the area of contact with the metacone. The metacone has a sharp, single lobed occlusal ridge whose posterior margin enters into contact with the distal cingulum. This cingulum continues along the lingual face of the metacone and the distal part of the paracone.

M1 has a tall, pointed paracone (Fig. 3). It is subtriangular in cross-section, and has a very notable mesiolabial ridge running its length. It also has prominent lingual ridge more prominent at the tooth base, and a distal ridge that ends in the depression between the paracone and metacone. The metacone has a sharp, single lobed occlusal ridge whose posterior margin enters into contact with the distal cingulum. This cingulum continues along the lingual face of the metacone and the distal part of the paracone.

M1 has a tall, pointed paracone (Fig. 3). It is subtriangular in cross-section, and has a very notable mesiolabial ridge running its length. It also has prominent lingual ridge more prominent at the tooth base, and a distal ridge that ends in the depression between the paracone and metacone. The metacone has a sharp, single lobed occlusal ridge whose posterior margin enters into contact with the distal cingulum. This cingulum continues along the lingual face of the metacone and the distal part of the paracone.

Table 2
Measurements (mm) of upper teeth. L = total length; w = maximum width.

<table>
<thead>
<tr>
<th>Upper teeth</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>M1</th>
<th>M2</th>
<th>Series</th>
<th>Premolar series</th>
<th>Molar series</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>w</td>
<td>L</td>
<td>w</td>
<td>L</td>
<td>w</td>
<td>L</td>
<td>w</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>FP1-2001-0434</td>
<td>5.41</td>
<td>3.75</td>
<td>10.91</td>
<td>4.20</td>
<td>11.64</td>
<td>4.46</td>
<td>18.48</td>
<td>8.63</td>
<td>12.49</td>
</tr>
<tr>
<td>FP1-2001-0175</td>
<td>–</td>
<td>–</td>
<td>9.87</td>
<td>4.21</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FP1-2001-0605</td>
<td>–</td>
<td>–</td>
<td>10.15</td>
<td>4.07</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FP1-2001-0531</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11.56</td>
<td>4.56</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FP1-2002-1486</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11.72</td>
<td>4.40</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FP1-2001-0156</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>18.91</td>
<td>8.58</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 3. Upper right jugal dentition (M1-M2) of Canis accitanus nov. sp. A. Detail of the upper molars. B. Distribution and nomenclature for the M1 cusps. The arrows show the position of the diagnostic features of Canis accitanus nov. sp. relating to this tooth.

Dentition jugale supérieure droite (M1-M2) de C. accitanus nov. sp. A. Détail des molaires supérieures. B. Distribution et nomenclature des cuspid dans la M1. Les flèches indiquent la localisation sur cette dent des traits diagnostiques de C. accitanus nov. sp.
M^2 is a small, well-developed tooth, the talon of which is slightly curved towards the posterior region of the skull. Its paracone is slightly larger than the metacone, although both cusps reach approximately the same height. The protocone, which is pointed and well developed, is joined to the basal cingulum by two well developed crests, one situated in a mesiolabial position, the other running towards the distal margin passing over a barely visible entocone. The hypocone appears as a thick lingual crest: no evidence of a cusp is visible.

The postcranial skeleton includes a complete radius; this has been slightly compressed and fractured but it conserves its original dimensions (total length: 144.96 mm; DT_{prox}: 15.29 mm; DAP_{prox}: 11.02 mm; DT_{distal}: 20.26 mm and DAP_{distal}: 10.60 mm) and the epiphyses are complete. The diaphysis is practically straight, ovoid in cross-section and very graceful in its constitution. The dorsal face of the diaphysis is convex while the plantar face is flatter. A long longitudinal crest runs along the latter face where the ligament joining the radius and ulna inserts. The joint surface of the proximal epiphysis has a kidney-like shape, is concave, and has a little developed oblique crest. The diaphysis becomes wider at its extreme distal end, giving rise to a transversally enlarged distal epiphysis with a very well-developed styloid apophysis.

4. Comparison and discussion

The general architecture of this small canid skull from Fonelas P-1, and the association of anatomical characteristics it presents – especially the presence of smooth (rather than rough) parietal bones plus the disproportions between the buccolingual (DBL) and mesiodistal diameters (DMD) of M^1 – exclude its owner from the genus *Nyctereutes*. In addition, the absence of the typical vulpine depression of the zygomatic process of the frontal bones, and the presence of an M^1 with a paracone larger than the metacone plus a little developed labial cingulum, rule out this animal as a member of the genera *Eucyon* or *Vulpes*; the members of these genera have substantially smaller dimensions than those of this new canid (Fig. 4). Nonetheless, the mesial projection of the protocone of P^4 with respect to the mesial margin of the paracone does approximate it anatomically to *Vulpes* (vulpines show a strong mesial projection of the protocone on this tooth). In essence, however, the animal’s cranial and dental anatomical characteristics are similar to those shown by members of the genus *Canis*.

The skull belongs to the smallest representative of *Canis* ever recorded at Fonelas P-1, and shows a series of anatomical characteristics similar to those seen in the lineage of the coyote (*Kurtén, 1974; Sotnikova, 2001*). Indeed, it would appear particularly similar to the Plio-Pleistocene species *C. arnensis*, with which it shares the features of a narrow muzzle, very mildly bowed frontal bones, and a little-developed sagittal crest. According to *Koufos* (1987) and *Koufos and Kostopoulos* (1997), the upper dentition of *C. arnensis* is characterised by a wide diastema between the upper premolars, a P^2 with no pac, a P^3 with a poorly developed pac, a P^4 with a small protocone, and tricuspid upper molars. These characteristics, however, are very general, and are seen in the majority of species belonging to the genus *Canis*. Furthermore, the presence of a diastema between the premolars or the presence/absence of a pac in these elements are features that appear to be subject to a certain intraspecific variability. Therefore, the majority of determinations regarding *C. arnensis* are only based on metric data; the specific diagnosis of this taxon needs to be reundertaken, taking into account anatomical characteristics less common among the species of the genus *Canis*.

Bearing in mind the current diagnosis for *C. arnensis*, the presence of a very narrow maxillofacial region, the diastema between the upper premolars, the absence of a pac in P^3, and the presence of a small pac in P^3 in the new canid anatomically relate *C. accitanus* nov. sp. to *C. arnensis*.

The diagnosis of *C. apolloniensis* by *Koufos and Kostopoulos* (1997) is surprising in its brevity: “small size; no diastema between the premolars; strong and well separated protocone; long M_1 with relatively short trigonid”. Certainly the majority of canid species diagnosed to date would fit perfectly with this diagnosis.

Once the ambiguity reigning within this group of small canids is accepted, it becomes clear that, despite the morphological homogeneity shown by these animals, skull FP1-2001-0434 shows a number of peculiar anatomical characteristics, e.g., the combination, on the first upper molar, of a well-developed protoconule plus a ridge between the entocone and metacone, along with the presence of a bilobate hypocone divided by a central notch.

A comparison of the skull of *C. accitanus* nov. sp. with those of modern-day *C. lupus, C. latrans, C. adustus, C. mesomelas* and *C. simensis* shows it to share features with some of these species. Indeed, a certain morphological affinity is seen with *C. simensis* in that both species share a very narrow maxillofacial region, narrow and very long palatine fissures, and an M^1 hypocone divided by a lingual notch. This last feature is also seen in some specimens of *C. lupus, C. adustus* and *C. latrans*. The presence of a ridge between the entocone and paracone has only been confirmed in *C. mesomelas*.

Apart from *C. accitanus* nov. sp., no protoconule was observed on M^1 in any canid studied, either fossil or modern. Similarly, the joint presence of a bilobate hypocone and a ridge between the entocone and metacone has never been described for any Eurasian taxon. Thus, no species of the genus *Canis* shows this association of characteristics.

Metrically, the new canid is clearly the smallest extinct member of the genus *Canis* that the European fossil record has ever provided (Fig. 4). It is even smaller than the smallest specimens of *C. arnensis*, including that examined by *Martin* (1973) and designated as *C. senezensis*. However, *C. accitanus* nov. sp. was substantially larger than extant jackals *C. mesomelas, C. adustus* or *C. aureus*.

To date, no lower dentition for *C. accitanus* nov. sp. has been found at Fonelas P-1, although given the presence of a deep hollow close to the metacone of P^4 and housed in the typical depression between P^4 and M^1, the presence of an M_1 with a long, pointed protoconid can be inferred.

With respect to the postcranial skeleton, the radius found at Fonelas P-1 shows the typical anatomical characteristics of the
genus, although it is substantially smaller than those of specimens of *C. mosbachensis* from L’Escale (Bonifay, 1971). In addition, the right radius FP1-2001-0069 is substantially larger than that of modern-day *V. vulpes*. Together, these data suggest this element belongs to the smallest member of the genus *Canis* ever discovered at Fonelas P-1.

5. Conclusions

Both the anatomical and metric characteristics of the studied material show it to belong to the smallest member of the genus *Canis* ever recorded at Fonelas P-1, a new fossil species: *C. accitanus* nov. sp.

The new species shares a series of basic morphological characteristics with *C. arnensis*. However, its upper dentition shows certain anatomical structures and associations of structures that have never been described before in this genus (e.g., those mentioned for P4 and M1), and it has a number of features resembling those of *Vulpes* that are not seen in other members of *Canis* (*C. etruscus*, *C. arnensis*, *C. lupus* and *C. latrans*), e.g., the general form of P4 and the mesial projection of the P4 protocone. It also appears to share certain characteristics with *C. etruscus* and *C. lupus* (not present in *C. arnensis* and *C. latrans*), such as the reduced longitudinal development of the distal platform of P3, a consequence of the presence of a posterior accessory cusp at the distal margin of the protocone which forms an inclined rather than a level distal platform. The general structure of M1 and the number and distribution of cusps on this tooth are homogeneous across *C. etruscus* and *C. lupus* (*C. arnensis* and *C. latrans*), but different in *Vulpes*, whose members show linguodistal development of the talon and a strong thickening of the labial cingulum. It should be noted that both patterns are different to that seen in *C. accitanus* nov. sp.

This new species of *Canis* shows a combination of autapomorphic and plesiomorphic features essentially in its jugal dentition. The autapomorphic features are interpreted to
be those resulting from adaptation to a more abrasive diet, this is inferred from the presence of elements showing anatomical affinities with the vultines, and the existence of the combination of characteristics described above. Together, these indicate the development of an occlusal surface more efficient for grinding food (a convergent adaptation for feeding on carrion in a manner similar to jackals such as *C. mesomelas*). The plesiomorphic features are those also present in the lineage *C. arnensis–* *C. latrans*. Probably, the members of this new species derive from a local, ancestral population of *C. arnensis*, for which remarkable evidence exists in an older lithostratigraphic layer at the Fonelas P-1 site (Facies Association A in Sondeo A [Viseras et al., 2006]).

Finally, this new canid was substantially smaller than *C. arnensis*, and is the smallest European member of *Canis s.s.* recorded to date.

Acknowledgements

This work was funded by the research projects IGME 2001-016 and IGME 2005-009, and by the Consejería de Cultura de la Junta de Andalucía (project “Estudio estratigráfico, taxonómico y paleoecológico del yacimiento de macromamíferos de Fonelas (Granada) en el marco faunístico y ambiental del Plio-Pleistoceno europeo”). The authors thank the rest of the Proyecto Fonelas team for their effort and enthusiasm during the difficult systematic palaeontology excavation campaigns. Manuel Berbel Leyva, who allowed us to work on his property, deserves our sincere thanks. Dr Claudio Sillero-Zubiri and Ruth Dalton kindly provided graphical documentation and metric data on the skull of the Ethiopian species *C. simensis*. We also thank Adrian Burton and Mónica Fernández-Monreal for linguistic assistance.

References

Roger, S., Coulon, C., Thouveny, N., Féraud, G., Van Velzen, A., Faquetter, S.,
layer in the Pliocene Senèze maar lacustrine sequence (French Massif
Central): constraint on the age of the Reunion-Matuyama transition and
implications on paleoenvironmental archives. Earth and Planetary Science

Rook, L., Azzaroli-Puccetti, M.L., 1996. Remarks on the skull morphology of
the endangered Ethiopian jackal, Canis simensis Rüppell, 1838. Atti della
Accademia Nazionale dei Lincei, Classe di Science Fisiche Matematiche e

Rook, L., Torre, D., 1996. The latest Villafranchian-early Galerian small dogs of

Siller-Zubiri, C., Gottelli, D., 1994. Canis simensis. Mammalian Species 485,
1–6.

Soergel, W., 1928. Ein Kleiner Wolf aus dem Kiesen von Stüssenborn. Zeits-
chrift der Deutschen Geologische Gesellschaft 80, 227–255.

Sotnikova, M.V., 1989. Late Pliocene-Early Pleistocene Carnivora. Stratigra-
phic significance. Trudy Akademia Nauk 440, 1–123.

Sotnikova, M.V., 2001. Remains of Canidae from the Lower Pleistocene site of
Untermassfeld bei Meiningen (Thüringen). 2. Römisch-Germanisches Zentralmuseum,
Mainz, pp. 607-632.

Spassov, N., Rook, L., 2006. Eucyon marinae sp. nov. (Mammalia, Carnivora), a
new canid species from the Pliocene of Mongolia, with a review of forms
referable to the genus. Rivista Italiana di Paleontologia e Stratigrafia 112,
123–133.

basin, China, Paleomagnetically calibrated mammalian biostratigraphic
standard for the Late Neogene of eastern Asia. Journal of Vertebrate
Palontology 11, 519–526.

Tedford, R.H., Qiu, Z., 1996. A new canid genus from the Pliocene of Yushe,

Thenius, E., 1954. Die Caniden (Mammalia) aus dem Altquartär von Hunds-
heim (Niederösterreich) nebst Bemerkungen zur Stammesgeschichte der
Gattung Canis. Neues Jahrbuch für Geologie und Paläontologie, Abhand-

Torre, D., 1967. I cani villafranchiani della Toscana. Palaeontographia Italica
63, 113–138.

Italiana di Paleontologia e Stratigrafia 80, 147–156.

Torre, D., 1979. The Ruscinian and Villafranchian dogs of Europe. Bolletino
della Società Paleontologica Italiana 18, 162–165.

events in the early Pleistocene of Western Europe. Courier Forschungsins-
titut Senckenberg 153, 51–58.

Novitates 2646, 1–10.

with size convergence in sympatric African jackals. Ecology 75,
1567–1581.

biostratigraphische Bedeutung. Jahrbuch des Römisch-Germanischen Zen-

Villalta, J.F., 1952. Contribución al conocimiento de la fauna de mamíferos
fósiles del Plioceno de Villarroya (Logroño). Boletín del Instituto Geoló-
gico y Minero de España 64, 3–204.

Viseras, C., Soria, J.M., Durán, J.J., Pla, S., Garrido, G., García-García, F.,
Arribas, A., 2006. A large mammals site in a meandering fluvial context
(Fonelas P-1, Late Pliocene, Guadix Basin, Spain). Sedimentological keys
for its palaeoenvironmental reconstruction. Palaeogeography, Palaeoclima-
tology, Palaeoecology 242, 139–168.

Werdelin, L., Lewis, M., 2000. Carnivora from the South Turkwel hominid site,

Werdelin, L., Lewis, M., 2005. Plio-Pleistocene Carnivora of eastern Africa:
species richness and turnover patterns. Zoological Journal of the Linnean
Society 144, 121–144.